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Homogeneous radiation-filled universe in general scalar 
tensor theory 
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Janeiro. Brazil 
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Abstract. The cosmological equations for the general scalar tensor theory proposed by 
Nordvedt (1970) in a Bianchi type-I radiation-filled universe are solved and the behaviour 
of the model is discussed. There are two distinct situations. Either the universe will explode 
from a big bang type singularity and continuously increase, or the universe may continu- 
ously contract to approach the singularity at the end. 

1. Introduction 

In view of some recent evidence (Van Flandern 1975) in favour of varying gravitational 
‘constant’ G, the interest in studying cosmologies accounting for such a phenomenon 
has increased. Theories of Dirac (1973), Hoyle and Narlikar (1971), Brans and Dicke 
(1961) and more recently the scale covariant theory of Canuto et a1 (1977) have been 
proposed, in which the Newtonian gravitation parameter G varies. A general scalar 
tensor theory of gravitation, which may be said to be a generalisation of Brans-Dicke 
theory, has also been discussed in this context by many authors (Bergman 1968, 
Wagoner 1970, Nordvedt 1970). Bishop (1976) used the formulation of Nordvedt for a 
homogeneous, isotropic and pressure-free cosmological model where the coupling 
parameter w is no longer a constant quantity as in Brans-Dicke theory, but is a function 
of the scalar field. In the present paper we have used the same theory of gravitation for a 
radiation-filled Bianchi type-I homogeneous cosmological model (Ryan and Shepley 
1975). The equation of state used here is p = 3p. This equation of state is of particular 
interest for the description of the dynamics of a ‘hot’ universe at the radiation and 
lepton eras. Moreover, there might be a large amount of anisotropy in the early 
universe in spite of the fact that the present universe appears to be highly isotropic. 

We have chosen a relation of the form p -4“ ,  where n may be any number, and 
finally obtained cosmological models with somewhat different properties at various 
ranges of the value of n. As in Bishop’s work (1976) all of the models discussed here are 
of the ‘big bang’ type. 

There are two distinct situations. Either the universe will explode from a big bang 
type singularity and continuously expand or the universe may continuously contract to 
approach the singularity at the end. There is no bounce anywhere in the history of the 
models. Somewhat unusual behaviour is observed in one of the expanding models, 
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where there is acceleration instead of deceleration in the motion during the evolution of 
the universe. This is perhaps due to the repulsive effect of the scalar field, which causes 
the acceleration. A similar but not exactly identical situation is described by Ruban and 
Finkelstein (1975) for the anisotropic model with matter having an equation of state 
p s p / 3  in Brans-Dicke theory, where a bounce takes place and prevents the singularity 
development if the parameter w is negative (w  < -6). They explain the phenomenon as 
due to the repulsion of the scalar field owing to the negative effective energy density. 
Such forces opposing the gravitational attractions are also encountered in the presence 
of a cosmological constant. 

2. General scalar tensor theory 

The field equations of the general scalar tensor theory (Nordvedt 1970) can be 
expressed as 

GwY = - ( k / 4 ) T W Y  - ( ~ / 4 ~ ) [ 4 , , 4 , ~  -hILY4r~@AI- (1 /4) [4; ,u - g w y W I  (2.1) 

(2.2) Cl4 = ( 3  + 2w)- ' [kT  - 4 , A @  (dw/dd)]. 

Where k = 8 ~ G 0 ,  and Go is an arbitrary constant having no effect on the physical results 
of the theory, so we can choose Go = G (today) and 4 becomes a dimensionless scalar 
field. It can be shown that as a consequence of (2.1) and (2.2) we have for matter energy 
momentum tensor the following relation, 

TFYiV  = 0.  (2.3) 

The gravitational constant in this theory measured by the observation of a slowly 
moving particle or in time dilation experiments is 

G = G~(L)~-I, w + 4  
2w + 3  (2.4) 

This can be shown easily by analogy with the post-Newtonian approximation for 
Einstein's field equations (Weinberg 1972). 

We consider the energy momentum tensor for the matter as a perfect fluid, so that 

(2.5) T,Y = ( P  + P ) U , U V  +pg,., 

where p is the mass density, p the pressure and U, the four-velocity satisfying 

U@U, = -1. (2.6) 

We assume an equation of state in the form 

(2.7) 

which is appropriate for a radiation-filled universe. For the space-time we choose a 
spatially homogeneous universe Bianchi type-I having the line element given by 

(2.8) 

Using comoving coordinates so that ua  = 8; the non-vanishing components of the field 

1 p = TP, 

ds2 = -dt2 + e 2 Y ( t )  dX2 + e2e(t)  dy2 + e2d'(r) dt2, 



Homogeneous radiation-filled universe 

equations (2.1) with (2.5) and (2.8) are 

Gg = ~ ( R / R ) 2 - ~ ~ ( y 2 + ~ 2 + ( 1 2 )  

= (k /4)p  +&(&/4) ’+ (&/4)  + ( W / 4 ) ,  

= -w/4 ) P  - (&/4,’ + w 4  1 + ( W / 4  1, 

= -(k/4)P - ~ w ( d / 4 ) z + e ( d / 4 ) + ( 0 4 / 4 ) ,  

= - ( k / 4 ) P  -~wtd/4)”+(&/4,+co4/4) 

Gi  = 8;+ (2; +$(R/Z?)[-i, + 8 + (I]+&[+’+ e’+ 4’1 

G i  = i; + (2; +;(AIR)[+ - 6 + (I]+&’ + e’+ 4’1 

G: = i; + t$+g(R/R)[j + e - $1 +;[i,’+ 8’+ (Iz] 

and the wave equation (2.2) becomes, 

04 = -4 - 3 ( d / R ) &  = (3 + 2 ~ ) - ’ & ~ ( d w / d 4 ) .  

The dot means differentiation with respect to time and 

R 3  = exp[y + f3 + $1. 
Equation (2.13) can be integrated, giving 

A 1 
4 = (2w + 3 ) 1 / ~  3 9  

where A is a constant of integration. 
The trace of (2.1) with (2.8) is 

3(R/R)’+ 6R/R + i,’ + e’+ (Iz = -w(d/c$)’ + 3 ( 0 4 / 4 ) ,  

and equating (2.15) with (2.9) we have 

12(R/R)’+ 6(R/R)  - 2kp/4 - 2($/4) - 504/4 = 0. 

Equations (2.5) and (2.7) allow us to integrate (2.3) 

p = B/R4,  

where B is a constant of integration. 
Subtracting equation (2.11) from (2.12) we obtain 

G i  - G ;  = (4 - e)(d/~$) = 8;- (2; + e z -  i2+ +(e  - (I), 
and assuming (I - 0 # 0 we integrate (2.18) and then we have 

i / 4  = (e - 4 1 ~ ~ ~ ~ .  
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(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

By an analogous procedure with equations (2.10)-(2.12) and assuming (i, - (I) # 0 and 
(i, - 6) # 0 we obtain 

l/+ = (i, - 4)D2R3 = (i, - e)D3R3, (2,20) 

where D I ,  DZ and D3 are constants of integration and satisfy 

DID’ + D2D3 = 0 1 0 3 .  (2.21) 
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3. Solutions of the field equations for a particular model 

The independent equations that we have to solve are five, (2.9)-(2.12) and (2.13), and 
the number of unknowns are six, which are y, 8, 9, w,  4 and p, hence we have here the 
freedom to assume one appropriate relation between these variables to obtain solutions 
of the system. We make the assumption that the mass density is proportional to an 
arbitrary power of the scalar field, 

p = b4" (3.1) 

where b is a positive constant. 
The wave equation (2.13) with (2.17) and (3.1) gives 

-&/d + j n  ($ /4 )  = (2w + 3)-'(dw/dt). (3.2) 

Substituting (3.2) back into the wave equation (2.13) and with the help of (2.17), 
(2.19), (2.20) and (3.1) we have 

3 4  = -(l/q5)(bq5"/B)3/4(1/D~ + l /D2)-$n(4/4) .  (3.3) 

Equations (2.9) with (2.17), (2.19), (2.20) and (3.1) give 

3 6  = - ( 1 / 4 ) ( b q 5 " / ~ ) ~ / ~ ( 1 / ~ ~  + i/~~)*{(i/q5~)(b4"/~)~/~(1/~~ + 1 p 2 1 2  

-6(d/4)2[-&)2 -:+an] - (3/q!J2)(bq!J"/B)3/2(1/O: + l/D;) 

-6kbq5'"-''- &V4)2(bq5"/B) I . (3.4) 

(3.5) 

(3.6) 

3 / 2  1 / 2  

Equations (3.3) and (3.4) give 

$(in - 1)2(d/q5)2+pq5($n-2)- kb4("-') - - 0, 

P = 4(b/B)'"[(l/D1+ 1/D2)2 - 3( 1/D: + l/D;) -$A2]. 

where P is a constant given by 

Equations (2.14) together with (2.17), (3.1) and (3.5) give the value of w in terms 
of q5, which substituted in (2.4) gives 

where 

L =$(in - 112. 

Now if one solves for q!J in equation (3.5), one can immediately integrate (3.3) to get 
the solution for 9. From (2.17) and (3.1) it is easy to obtain R in terms of q5 and then 
integrating (2.19) one can obtain the solution for 8 because 4 and 9 are already known. 
Similarly y can be solved from (2.20). 

4. Behaviour of the solutions 

We can write the integration of (3.5) in terms of elementary functions o d y  for particular 
values of n (Gradshteyn and Ryzhik 1965). We will not here give the explicit solution 
for particular values of n, but rather try to study the general behaviour of the solutions. 
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From (2.17) and (3 .1)  we have 

R 4  = (B/b)4-",  

and also rewriting equation (3 .5) ,  we have 

2833 

(4.1) 

It is not difficult to show that the constant P given by (3 .6 )  is a negative definite quantity 
and in consequence from (4.2) we have neither a maximum nor a minimum for 4. This 
means that we have either an expanding universe starting from a big bang type 
singularity and increasing in size indefinitely without any bounce when 0 < n < 2, or we 
have a universe collapsing steadily towards the singularity when n > 2 or n < 0. In the 
first case & < 0 always and in the second case & > 0 for n > 2, while & < 0 for n < 0. 
These can be easily verified from the relation (4.2). When n = 2, however, the solution 
is not consistent. 

It is interesting to note what would happen to the value of G and also the parameter 
w near the singularity. One can write, using (2.14), (3 .5 )  and (4.1), the following 
expression for w : 

(4.3) 

In the above we write h2  for -P. 

different cases. 
One can now make an estimate for the parameters w and G near the singularity in 

When n < 0 we have from (3 .7)  and (4 .3 )  near the singularity 

4+0,  G+co and w + { [ 3 ( b / B ) 3 / 2 A 2 / 8 h 2 ] ( &  - 1)'-$}. 

When 0 < n < 2 we have similarly near the singularity 

4 + a ,  G+O and w + - T .  3 

When n > 2 we have near the singularity 

4 + a ,  G+O and w + ( [3 (b /B) ' / 'A2 /8h2] ($n  - l)2-z}. 

It is clear from above that at least for a certain range of values of n, the parameter w 
assumes negative magnitudes near the singularity. However, at later times w may 
increase and can attain positive values. 

We now compute two other important quantities representing the expansion scalar 
and the anisotropy of the model. It is interesting to investigate their magnitudes near 
the singularity, because this gives some understanding about the dynamics of the 
models for different ranges of n. The expansion scalar and the anisotropy a are 
defined respectively (Raychaudhuri 1955) as 

= 3 R / R  (4.4) 

and 
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Using (4.1), (4.2) and also (2.19), (2.20) one can calculate the above scalars to obtain 
finally 

and 

We have here different situations depending on the value of n. In all cases the 
singularity occurs when R + 0 and consequently from (2.17) p + 00, which means that 
the proper volume tends to vanish and the radiation density p and the pressure p both 
approach infinitely large magnitudes. 

Case (i): For n > 2 we have a collapsing system and at the singularity 
- 

4 +a, 8+-00 and lul+ x. 

4+0 ,  8+-00 and lml+ x. 

Case (ii): For n < 0 we have again a collapsing system and at the singularity 
- 

In all other cases we have an explosion from the singularity where 4 + 00. These cases 
are interesting and deserve a more detailed analysis. 

Case (iii): $< n < 2. We have g+ x when 4 + CO, but at this point lml +CO when 
$< n < 2 and Iml approaches a constant finite quantity for n = 4. From (4.2) and (3.3) it 
is evident that in this case 4 < 0 and behaves as 4(n+1'/2 when 4 + 00. Also 4 - 
4'""'2 - l / t  by a suitable choice of the integration constant so that at t = 0 we have the 
singularity and 4 + 00. The time behaviour of CC, near t = 0 is then easy to calculate. It 
can be further shown from the simple analysis of equations (2.19) and (2.20) that + and 
6 have the same properties near the singularity, which is of point-like character. 

By analogous calculations for small values of 4 one can show that both the 
expansion scalar s and the anisotropy ICTJ vanish asymptotically at late stages of the 
evolution. 

Case (iv): 1 < n <$, We have g+ X and lml+ 0 when 4 +a. 
In this case C$ < O  and near the singularity 4 behaves as 4'""'2 , so that 4- 

4("1)'2 - l / t .  At the singularity t = 0 4, 6 and y all attain infinitely large positive 
values. Time behaviours of CC,, 8 and y near the singularity can also be determined and 
are found to represent a point singularity as in case (iii). The asymptotic behaviour is, 
however, different in this case. Asymptotically at later time 4 + 0 and the expansion 
scalar 8 attains an infinitely large magnitude. The expansion 8 is infinitely large at the 
initial instant of point singularity, decreases in the course of time and again increases at 
a later period. This is perhaps due to the predominance of the repulsion effect of the 
scalar field at later stages of the evolution. It is interesting to note that in this case near 
the big bang singularity the expansion is isotropic and at later stages anisotropy 
develops. 

Case (v): n = 1. We have here g + a  finite positive quantity and l a / + O  at the 
singularity, where 4 + 00. Near the singularity 4 < 0 and IC$ 1 - 4. 4, 4 and i, all behave 
like finite time-independent quantities. The expansion gincreases in the course of time 
and both and the anisotropy IvI become extremely large asymptotically when q5 
becomes vanishingly small. 
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Case (vi): 0 < n < 1. We have here the expansion e zero at the singularity. There is 
no anisotropy (la1 = 0) at this initial stage. 4 is negative and IC$ 1 - q5(n+1)’2, so that 4, 6 
and i, all have zero magnitudes when q5 + Co. Asymptotically as q5 + 0, e+ a, ImI + 00. 

Here also the dynamics of the model exhibits acceleration instead of deceleration. 
For cases n < 2  all the linear dimensions vanish near the singularity and thus the 

models start from point-like singularities. For cases n > 2 or n < 0 there is a volume 
collapse represented by 6+-00, but all of 4, 6 and i, may not be of the same sign 
depending on constants D1, D2 and D3 as can be seen from simple analysis of equations 
(2.19), (2.20), (3.3) and (4.2) near the singularity. 

The singularities in this case may not necessarily be of point type. The occurrence of 
a line singularity or a disc-type singularity depends on the relative signs and magnitudes 
of D1, D2 and D3. Further there are two distinct situations. In some cases the initial 
explosion is highly anisotropic and the anisotropy is removed, in the course of time, at 
late stages of evolution. In some other cases the model starts with an isotropic motion 
and anisotropy grows later. 
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